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Abstract. The semi-infinite axial next-nearest-neighbour Ising (ANNNI) model in the disordered
phase is treated within a molecular-field approximation, and the singularities of various response
functions characterizing the critical behaviour at the surface are obtained. In previous work
(Binder K and Frisch H L 1999 Eur. Phys. J.B 10 71) the axis where a nearest-neighbour
ferromagnetic(J1) and next-nearest-neighbour antiferromagnetic(J2) exchange compete was
chosen perpendicular to the surface plane. In the present work we consider an orientation of this
axis parallel to the surface, allowing also for different values of these exchange interactions(j1, j2)

in the surface plane. We derive the conditions for the occurrence of a surface transition, where the
surface plane (at a temperature where the bulk is still disordered) orders either ferromagnetically
or into a modulated structure. At the ordinary transition of the surface we obtain the mean-field
values of the surface critical exponents, including the Lifshitz point of the bulk, whereγ L1 = 1/2,
γ L11 = −1/2, ηL⊥ = 0, ηL‖ = 3. These exponents differ from their counterparts for the case where
the axis of competing interactions is oriented perpendicular to the surface, and thus it is shown that
for a uniaxial Lifshitz point the surface critical behaviour depends on the surface orientation.

1. Introduction

The axial next-nearest-neighbour Ising (ANNNI) model [1–5] is an archetypical model
describing how competing interactions in a solid can give rise to incommensurately modul-
ated order and uniaxial Lifshitz points [4–7]. In this model, sitesi of a (hyper-) cubicd-
dimensional lattice carry Ising spinsSi = ±1, which interact ind − 1 directions with a
nearest-neighbour ferromagnetic exchange interactionJ0, while in the remaining direction
(z) there is a competition between a nearest-neighbour ferromagnetic exchangeJ1 > 0 and a
next-nearest-neighbour antiferromagnetic exchangeJ2 < 0. If the ratioκ = −J2/J1 exceeds a
particular valueκL (κL = 1/4 in molecular-field theory [4, 5]), the system undergoes a (second-
order) phase transition at a temperatureTmb(κ) from the disordered phase to a phase whose
order is modulated in thez-direction with a wavelengthλ = 2π/q(κ) with q(κ) ∝ (κ − κL)βq
[6, 7], the exponentβq in mean-field theory beingβq = 1/2. At the Lifshitz point (κ = κL,
T = TL = Tcb(κ = κL) = Tmb(κ = κL); see figure 1 for a partial phase diagram of the
ANNNI model in the molecular-field approximation) there is no longer any modulation, but
the critical behaviour is anisotropic since the wavevector-dependent susceptibilityχ(Eq‖, qz)
0953-8984/00/010029+14$30.00 © 2000 IOP Publishing Ltd 29
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Figure 1. The phase diagram of the ANNNI model for the bulk in the molecular-field approx-
imation, in the plane of variables (kBT − z‖J0)/J1 andκ = −J2/J1, z‖ being the coordination
number in the (hyper-) plane normal to thez-direction. The phase transition occurs from a
paramagnetic phase (P), characterized by a monotonically decaying correlation function, to a
ferromagnetic phase (F) atT = Tcb(κ) for κ 6 κL, with kBTcb(κ) = z‖J0 + 2J1(1− κ). The end
point of this line,TL = Tcb(κ = κL), is the Lifshitz point. Forκ > κL one has a transition from
a disordered phase (D), where the correlation function exhibits an oscillatory decay, to a phase
with modulated periodic order atT = Tmb(κ) = Tcb(κ) + J1(κL/κ)(κ/κL − 1)2/kB . Note that in
molecular-field theoryTcb(κ) andTmb(κ)meet tangentially at the Lifshitz point. The disorder line
Td(κ) = Tcb(κ) + J1(κL/κ)(κ/κL − 1)2/kB , κ < κL, does not indicate a thermodynamic phase
transition but a change in the asymptotic decay of the correlation function (from exponentially
damped oscillatory forT > Tc(κ) to simple exponential forTd(κ) > T > Tcb(κ). The disorder
line also merges tangentially atTL with Tcb(κ). Only the phase transition at the highest temperature,
where the disordered (or paramagnetic) phase becomes unstable, is shown here. Commensurate–
incommensurate transitions occurring at lower temperatures [4, 5] are not shown here. From Binder
and Frisch [18].

behaves as

χ(Eq‖, 0) = χb/(1 + ξ2
‖ q

2
‖ ) χ(0, qz) = χb/(1 + ξ2

⊥q
4
z ) (1)

with ξ‖ ∝ (T − TL)−ν‖ , ξ⊥ ∝ (T − TL)−ν⊥ , with critical exponentsν‖ = 1/2, ν⊥ = 1/4
in mean-field theory [4, 5]. Of course, for an accurate description of this anisotropic critical
behaviour one has to go beyond mean-field theory taking fluctuations into account, e.g. by a
renormalization group treatment [6–9], but this is beyond the scope of the present paper.

Here we are concerned with the effect of a free surface on the critical behaviour of this
model, and in particular, at the Lifshitz point. While surface critical behaviour of ferromagnets
has been considered extensively [10–13], and also surface effects on modulated phases in
isotropic systems such as block copolymer mesophases have been occasionally considered
[14–17], the surface critical behaviour at uniaxial Lifshitz points has attracted attention only
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Figure 2. The cross section perpendicular to
the surface plane of a semi-infinite simple cubic
ANNNI model, the surface plane being oriented
perpendicular to the direction where the modulation
appears. Nearest-neighbour exchange constants in the
surface plane are denoted asJs , while the exchange
constants in all interior planes parallel to the surface
are J0. The nearest-neighbour exchange in thez-
direction perpendicular to the surface isJ1, the next-
nearest-neighbour exchange in thez-direction isJ2 (it
is shown explicitly in the top row only). The lattice
spacing isa. In the corresponding continuum model,
the lateral coordinates are denoted asEρ. From Binder
and Frisch [18].

recently [18, 19]. Two of the present authors (HLF and KB) have analysed the situation where
the surface is oriented perpendicular to the modulation direction [18] (figure 2).

Here, we orient the free-surface plane so that it contains the modulation direction (figure 3).
The anisotropy of the model renders the two surface orientations of figure 2 and figure 3
inequivalent. In particular, if a ‘surface transition’ [10–13] occurs in the case of figure 2
at Tcs(κ), a ferromagnetic long-range order in the surface plane sets in, even forκ > κL
where the bulk has a transition to the modulated structure atT < Tmb(κ). In the temperature
rangeTmb(κ) < T < Tcs(κ) this ferromagnetic surface layer then induces a modulation
perpendicular to the surface with an amplitude that decays exponentially (∝ exp(−z/ξ⊥)where
ξ⊥ is the bulk correlation length in thez-direction) as one moves towards the bulk. In contrast,
a surface transition in the case of figure 3 can mean the onset of either(d − 1)-dimensional
ferromagnetic or uniaxially modulated order, depending on the values of various exchange
interactionsj1, j2, J0, J1, andJ2 that come into play. If a modulated order in thez-direction
sets in atTcs(κ), for T < Tcs(κ) (but temperatures where the bulk is still disordered), a
corresponding modulation will be induced in the interior layersn = 2, 3, . . ., but with an
exponentially decaying amplitude (∝ exp(−x/ξ‖)whereξ‖ is the bulk correlation length in the
x-direction). Particularly interesting is the behaviour of the ‘ordinary transition’ [12, 13] (no
surface transition atTcs(κ) occurs; rather the surface order is induced by the ordering of the
bulk) at the Lifshitz point of the bulk: we shall see that the surface critical exponents depend
on the orientation of the surface in this case.

2. Linearized molecular-field theory for the semi-infinite ANNNI model on a lattice

In molecular-field theory, every spin is aligned by the local field acting on it, so we have
〈Si〉 = tanh(H i

eff /kBT ), and the local effective fieldHi
eff is written as a sum of the external
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Figure 3. The cross section perpendicular to the
surface plane of a semi-infinite simple cubic ANNNI
model, the surface plane containing thez-direction
in which the modulation appears. Nearest and next-
nearest exchange constants in thez-direction arej1,
j2 in the surface plane, andJ1, J2 in all other planes.
The (nearest-neighbour) exchange constant in all other
lattice directions isJ0 (for d > 3 this exchange constant
also occurs in the surface plane). Layers oriented
parallel to the surface are labelled by an indexn (n = 1
for the surface plane); planes oriented perpendicular to
the modulation directionz are labelled by an indexk.

fieldHi
ext (it may be convenient to assume that this field is inhomogeneous, so one can consider

e.g. the response to a suitably periodically modulated field) and the contributions due to the
coupling to the neighbouring spins. These contributions are taken proportional to〈Sj 〉. In the
region above any transition temperature and for small enoughHi

ext , one may linearize these
molecular-field equations, which means one considers the effect of the external fieldHi

ext in
linear response. This is the only case that will be considered here.

For simplicity, we work out only the special case of a(d = 2)-dimensional square lattice.
(This is not a serious restriction on the mean-field level, however, since molecular-field theory
yields only rather trivial dependencies on dimensionality.) So the lattice sitesi are labelled
by two indices, for rowsn and columnsk, and we introduce the notation〈Si〉 = Mn,k. Then
the linearized mean-field equation in the bulk (i.e.,n > 2) becomes, considering a modulated
field in the bulk(H i

ext = B exp(iqka))

kbTMn,k = B exp(iqka) + J1(Mn,k+1 +Mn,k−1) + J2(Mn,k+2 +Mn,k−2)

+ J0(Mn+1,k +Mn−1,k) n > 2. (2)

HereB is the amplitude of the bulk periodic field, and the special case of a bulk uniform field
is recovered forq = 0.

In the surface layer (corresponding ton = 1) the couplings parallel to the surface are
different. They are denoted asj1 andj2 (see figure 3). It is also convenient to allow for a
different amplitudeb of the magnetic field applied in the surface layer [10–12]. For the surface
layer, the linearized molecular-field equation then becomes

kBTM1,k = b exp(iqka) + j1(M1,k+1 +M1,k−1) + j2(M1,k+2 +M1,k−2) + J0M2,k n = 1.

(3)

Let

Mn,k = (m +µn) exp(iqka) (4)
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wherem is the ‘bulk’ periodic magnetization. Requiringm + µn to satisfy the linearized
mean-field equations means

kBT (m +µn) = B + 2[J1 cos(aq) + J2 cos(2aq)](m +µn) + J0(2m +µn−1 +µn+1) (5)

and

kBT (m +µn) = b + 2[j1 cos(aq) + j2 cos(2aq)](m +µ1) + J0(m +µ2). (6)

We can assume thatµn becomes small for largen and this allows one to extract the bulk
magnetizationm from equation (5):

m = B

kBT − 2[J0 + J1 cos(qa) + J2 cos(2qa)]
= B/kB

T − T (q) . (7)

Here

kBT (q) = 2[J0 + J1 cos(qa) + J2 cos(2qa)] (8)

is the bulk instability temperature for wavenumberq. The expression form (equation (7))
makes sense only for temperatures which keep the denominator positive for allq. The
instability of the disordered phase in the bulk occurs whenT is equal to the largestT (q),
for aq which we denote asqb. MaximizingT (q)with respect toq gives eitherqb = 0 (namely
for κ < κL) or [18]

cos(qba) = (4κ)−1. (9)

A more detailed discussion of the bulk behaviour of the ANNNI model within mean-field
theory has been given by Binder and Frisch [18].

We now make theansatz that the correction to the uniform magnetization decays
exponentially with the distance from the surface, as is standard [10–12, 18].

µn = µ1 exp[−0(q)(n− 1)] (10)

solves equation (5) if the decay rate0(q) is such that

cosh[0(q)] = {kBT − 2[J1 cos(qa) + J2 cos(2qa)]}/2J0 = 1 +
kB [T − T (q)]

2J0
. (11)

The amplitude of this decaying magnetization is determined by the linearized molecular-field
equation at the surface layer, which serves as a boundary condition:

µ1 = b − {kBT − 2[j1 cos(qa) + j2(cos 2qa)] − J0}m
kBT − 2[j1 cos(qa) + j2 cos(2qa)] − J0 exp[−0(q)] . (12)

This expression can also have singularities which correspond to the surface transition if they
occur at a temperature where the disordered phase is still stable in the bulk. Writing the
denominator of equation (12) in analogy with equation (7) askB(T −τ(q)) gives the instability
temperature for the surface as a function ofq as

τ(q) = 2[j1 cos(qa) + j2 cos(2qa)] + J0 exp[−0(q)]. (13)

Which type of ordering takes place depends on the functionsT (q) andτ(q). Let qb be the
value ofq which maximizesT (q) and letqs be the value ofq which maximizesτ(q). Then
the following cases describe the orderings that can occur. Some special cases which one can
encounter by suitable variation of the exchange constantsJ1, J2 in the bulk andj1, j2 in the
surface are emphasized.

(1) qb = 0 andT (0) > τ(qs). Ferromagnetic bulk ordering and ‘ordinary’ surface critical
behaviour. Forκ < κL this is similar to the standard case considered in the literature
[10–13], while forκ = κL we encounter ‘ordinary’ surface critical behaviour at the bulk
Lifshitz point.
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(2) qb 6= 0 andT (qb) > τ(qs). Modulated bulk ordering and ‘ordinary’ surface critical
behaviour.

(3) qs = 0 andτ(0) > T (qb). A surface transition to ferromagnetic surface ordering occurs.
Forκs ≡ −j2/j1 less thanκsL this is similar to the standard case considered in the literature
[10–13], while forκs = κsL we encounter a surface version (i.e.,(d − 1)-dimensional
ordering) of the Lifshitz point.

(4) qs 6= 0 andτ(qs) > T (qb), for κs > κsL. A surface transition to modulated surface
ordering occurs. The behaviour is similar to that for the bulk ifqs → 0 asκs tends toκsL
from above. However, for some parameters it seems possible that a discontinuous jump
of qs from a nonzero value to zero atκsL occurs. This eliminates the(d − 1)-dimensional
Lifshitz-point behaviour atκsL.

(5) When the surface transition atτ(qs) and the bulk transition atT (qb)merge, we obtain the
‘special transition’ (also called the ‘surface–bulk’ multicritical point [12, 13]). This point
occurs forT (qb) = τ(qs) in molecular-field theory. Ifqb = 0, qs = 0, andκ < κL, we
have a situation similar to the standard case considered in the literature [10–13]. If both
qb andqs are nonzero butJ2/J1 6= j2/j1, the physics is rather different, because different
types of ordering become critical at the surface and in the bulk.

Obviously, the model considered here has a very rich phase behaviour. In the following,
we shall not attempt to give an exhaustive analysis of all possible cases (note that one may also
have the special case that a surface–bulk multicritical point might coincide with the Lifshitz
point in the bulk, etc), but discuss only a few particularly relevant cases.

3. Surface critical behaviour near the bulk Lifshitz point

We first consider the case whereκ < κL (whereqb = 0) and assume surface interactionsj1,
j2 such that no surface transition occurs (as will be specified below). We then consider the
response of the magnetization in the surface layer

M1 = M1,k = m +µ1 independent ofk (14)

to homogeneous bulk(B) or surface(b) fields, noting from equations (7) and (12) that

m = B/[kBT − 2(J0 + J1 + J2)] = B/[kB(T − Tcb(κ))] (15)

µ1 = b − [kBT − 2(j1 + j2)− J0]m

kBT − 2(j1 + j2)− J0 exp(−0) . (16)

NearT = Tcb we may expand: exp(−0) ≈ 1−0 and use [11] (see also reference [18]) to find
0 ≈ [kB(T − Tcb)/J0]1/2. This yields for the surface layer susceptibilityχ1 (for definitions
cf. [12])

χ1 ≈ (∂M1/∂B)T ≡
[

J0

kB(T − Tcb)
]1/2 1

kBT − J0 − 2(j1 + j2)
(17)

in agreement with the expected critical behaviourχ1 ∝ (T − Tcb)−γ1 with γ1 = 1/2 [10–13].
Similarly, the susceptibilityχ11 becomes

χ11 ≡ (∂M1/∂b) = [kBT − 2(j1 + j2)− J0 exp(−0)]−1 (18)

which can be expanded nearT = Tcb:
χ11 ≈ [kBTcb − 2(j1 + j2)− J0]−1− [J0(T − Tcb)/kB ]1/2[kBTcb − 2(j1 + j2 − J0)]

−2.

(19)
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Thus one finds a cusp-like singularity:

χ11 ≈ χcrit11 − χ̂11(T − Tcb)−γ11 with γ11 = −1/2. (20)

All these results, equations (17)–(20), hold only forkBTcb − J0 > 2(j1 + j2). When this
inequality turns into an equality, we get the (ferromagnetic) surface–bulk multicritical point:

jSB1 + jSB2 = J1 + J2 + J0/2. (21)

Here the well-known result forTcb was used [18]:kBTcb = 2(J1 + J2 + J0).
It is also interesting to work out the wavevector-dependent susceptibilityχ1(q) along the

ferromagnetic line for smallq. Equations (7), (12) imply forT nearTcb

χ1(q) ≡
(

∂M1

∂B exp(iqka)

)
T

≈
[

J0

kB(T − T (q))
]1/2/

{kBTcb − J0 − 2[j1 cos(qa) + j2 cos(2qa)]} . (22)

Since for smallq we can expandT (q) as

kBT (q) ≈ kBTcb − a2q2(J1 + 4J2) + o(q4) (23)

we obtain

χ1(q) ≈ [J0/kB(T − Tcb)]1/2(1 +q2ξ2
⊥)
−1/2/ {kBTcb − J0 − 2[j1 cos(qa) + j2 cos(2qa)]}

(24)

whereξ2
⊥ = (J1 + 4J2)a

2/[kB(T − Tcb)] ∝ (T − Tcb)−1 for κ < κL. Equation (24) shows that
atT = Tcb we obtain a power-law decay

χ1(q)
∣∣
T=Tcb ≈

√
J0

a2(J1 + 4J2)
q−1 ∝ q−2+η⊥ η⊥ = 1. (25)

As it should be, the scaling relation [10, 12]

µ1 = νb[2− η⊥] (26)

is satisfied for the mean-field exponents along the ferromagnetic line (rememberνb = 1
2).

Similarly,

χ11(q) ≡
(

∂M1

∂b exp(iqka)

)
T

' {kBT − 2[j1 cos(qa) + j2 cos(2qa)] − J0 exp[−0(q)]}−1

(27)

which nearTcb can be expanded as

χ11(q) ≈ {kBTcb − 2[j1 cos(qa) + j2 cos(2qa)] − J0}−1

− J00(q){kBTcb − 2[j1 cos(qa) + j2 cos(2qa)] − J0}−2. (28)

From equation (11),

J00
2(q) ≈ kB(T − Tcb) +

1

2
q2a2(J1 + 4J2) + o(q4). (29)

Thus atTcb the singular part ofχ11(q) scales asχsing11 |T=Tcb ∝ q = q−1+η‖ which yields the
well-known resultη‖ = 2 [10–12]. Thus the scaling relation [10–12]

γ11 = νb(1− η‖) (30)

is also fulfilled along the whole ferromagnetic line, 06 κ < κL, and the exponents all have
their standard values. Only amplitude prefactors depend onκ, as expected.
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We next consider the modulated phase,κ > κL, and obtain the wavevector-dependent
response functions forq = qb, assuming thatqb is small enough that we may approximate
cosqb ≈ 1− q2

b /2, i.e.qb =
√

2
√

1− κL/κ [18]. NearT = Tmb = T (qb) we again have
0(qb) ≈ [kB(T − Tmb)/J0]1/2 and hence the response functions for modulated order become

χm1 ≡ (∂M1/∂[B exp(iqbka)])T = ∂(m +µ1)/∂B

≈
(

J0

kB(T − Tmb)
)1/2

× {kBTmb − J0 − 2[j1 cos(qba) + j2 cos(2qba)] + J00(qb)
}−1

(31)

and

χm11 ≡ (∂M1/∂[b exp(iqbka)])

= {kBT − 2[j1 cos(qba) + j2 cos(2qba)] − J0 + J00(qb)}−1 . (32)

These results yield the same type of singularity for the surface critical behaviour along the
transition line to the modulated phase as for the ferromagnetic transition:

γ
(m)
1 = 1/2 γ

(m)
11 = −1/2. (33)

Considering the wavevector-dependent response forq 6= qb and expanding inq − qb, one can
also show thatη(m)⊥ = 1, η(m)‖ = 2 and the scaling relations equations (26), (30) continue to
hold.

From the phase diagram (figure 1) it follows that we can readily obtain the critical behaviour
at the Lifshitz point lettingκ = κL = 1/4 andqb = 0. Thus we see that

χL1 ≈
(

J0

kB(T − TL)
)1/2/

{kBTL − J0 − 2(j1 + j2)} i.e. γ L1 = 1/2 (34)

χL11 = {kBT − 2(j1 + j2)− J0 + J00}−1 i.e. γ L11 = −1/2. (35)

While these exponents are the same as along the ferromagnetic line, the exponentsηL⊥, ηL‖
differ. This is obtained from an expansion analogous to equation (29). The term proportional
to q2 vanishes and one must include a term proportional toq4. Forκ = κL,

kBT (q) = kBTL +
1

12
(aq)4(J1 + 16J2) + o(q6). (36)

Hence the wavevector-dependent surface layer susceptibilities at the Lifshitz point become

χL1 (q) =
√
J0/kB

T − TL
1√

1 +q4ξ4
⊥

/
{kBTL − J0 − 2[ji cos(aq) + j2 cos(2aq)]} (37)

where

ξ⊥ = a
(
J1

4kB

)1/4

(T − TL)−1/4 ξ⊥ ∝ (T − TL)−νL⊥ νL⊥ = 1/4 (38)

and

χL11(q) ≈ {kBTL − 2[j1 cos(qa) + j2 cos(2qa)] − J0}−1

− J 1/2
0 [kB(T − TL)− q4a4(J1 + 16J2)/12]1/2

×{kBTL − 2[j1 cos(qa) + j2 cos(2qa)] − J0}−2 + · · · . (39)

These results show that forT = TL theq-dependence is

χL1 (q) ∝ q−2 χ
L,sing

11 (q) ∝ q+2 (40)
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i.e., the exponentsηL⊥, ηL‖ are(χL1 (q) ∝ q−2+ηL⊥ , χL,sing(q) ∝ q−1+ηL‖ )

ηL⊥ = 0 ηL‖ = 3. (41)

These are exactly the values required to satisfy the scaling relations

γ L1 = νL⊥(2− ηL⊥) =
1

4
× 2= 1

2
γ L11 = νL⊥(1− ηL‖ ) =

1

4
× (−2) = −1

2
. (42)

We emphasize at this point that for the orientation of the surface perpendicular to thez-axis
(where the competing interactions occur) a completely different set of exponents has been
found, namely [18]

γ L1 = 1/2 γ L11 = −1/4 ηL‖ = 3/2 ηL⊥ = 1. (43)

Considering here also aq-vector oriented parallel to the surface, it is clear that the correlation
lengthνL‖ = 1/2 rather thanνL⊥ = 1/4 has to be used in the scaling relations, equations (26),
(30), which are then also fulfilled. Comparing equations (34), (35), (41) with equation (43)
shows the most important result of the present work, namely that the surface critical exponents
at a uniaxial Lifshitz point depend on the orientation of this axis relative to the surface.

4. Surface transitions

We return to the caseκ < κL whereqb = 0 and also assumeqs = 0, but now we allow for
the case that has been excluded in the previous section, namelykBTcb − J0 < 2(j1 + j2): the
negative sign of the denominator in equation (17) then signals that this equation is no longer
valid. Instead a surface transition has occurred, at a critical temperatureTcs which is given by
the implicit equation

kBTcs = 2(j1 + j2) + J0 exp{−0(Tcs)}. (44)

All susceptibilitiesχ1(T ) andχ11(T ) have simple Curie–Weiss singularities there, familiar
from bulk critical points in the mean-field approximation. This is seen via the expansion

exp{−0(T )} ∼= exp{−0(Tcs)}
{

1− (T − Tcs)
(

d0

dT

)
T=Tcs

}
(45)

which yields, together with equation (18)

χ11 = [kB(T − Tcs)]−1

×
{

1 +J0 exp[−0(Tcs)]
(

d0

dT

)
T=Tcs

}−1

for j1 + j2 > J1 + J2 +
J0

2

(46)

and a similar result applies forχ1. These results do not differ in any significant way from the
surface critical behaviour of the nearest-neighbour Ising ferromagnet; they hold for allκ < κL
but not including the Lifshitz point. However, since the above assumption thatqb = 0 for
T > Tcb holds only underneath the disorder line,T < Td(κ) [20], andTd(κ) merges with
Tcb(κ) at the Lifshitz point [18]; cf. figure 1.

More interesting is the case where a modulated phase appears at the surface before any
order appears at the bulk. We are not treating this problem in full generality, but focus only on
the situation whereqsa � 1, so cos(qsa) can be expanded:

τ(qs) ≈ 2(j1 + j2) + J0 − a2q2
s (j1 + 4j2) +

a4q4
s

12
(j1 + 16j2)− J00(qs) +

1

2
J00

2(qs) (47)
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where

0(qs) = J−1/2
0 [kB(T − Tcb) + a2q2

s (J1 + 4J2)− 1

12
a4q4

s (J1 + 16J2)]
1/2.

However, care is necessary in the proper treatment of0(qs): when T → Tcb the term
kB(T − Tcb) will always get smaller than the subsequent terms even for very smallqs , and
therefore in this limit the square root cannot be expanded in a power series inqs . Such an
expansion is possible only whenTcs is sufficiently larger thanTcb thatkB(Tcs − Tcb) for all q
of interest is the dominating term under the square root. In this limit one gets

τ(q) ≈ 2(j1 + j2) + J0 − a2q2(j1 + 4j2) +
a4q4

12
(j1 + 16j2)− J0

[
kB(Tcs − Tcb)

J0

]1/2

− 1

2

[
J0

kB(Tcs − Tcb)
]1/2

(J1 + 4J2)(a
2q2)

+

{
1

24

[
J0

kB(Tcs − Tcb)
]1/2

(J1 + 16J2)

+
1

8J0

[
J0

kB(Tcs − Tcb)
]3/2

(J1 + 4J2)
2

}
a4q4

+
1

2
kB(Tcs − Tcb) +

1

2
(J1 + 4J2)(a

2q2)− 1

24
(J1 + 16J2)(a

4q4). (48)

Thenqs is found from the condition dτ(q)/dq = 0 (and d2τ(q)/dq2|qs < 0). This yields (note
that both the numerator and the denominator of the following expression must be negative)

a2q2
s =

{
2(j1 + 4j2) +

[
J0

kB(Tcs − Tcb)
]1/2

(J1 + 4J2)− (J1 + 4J2)

}/{1

3
(j1 + 16j2)

+
1

6

[
J0

kB(Tcs − Tcb)
]1/2

(J1 + 16J2) +
1

2J0

[
J0

kB(Tcs − Tcb)
]3/2

× (J1 + 4J2)
2 − 1

6
(J1 + 16J2)

}
. (49)

Thus we conclude that the surface Lifshitz point, whereqs → 0, is given by the condition

2(j1 + 4j2) = (J1 + 4J2)

{
1−

[
J0

kB(Tcs − Tcb)
]1/2

}
(50)

whereTcs is given by the solution of equation (44). Since the expansion that we have used
requires0(qs) � 1, 0(qs = 0) ≈ [kB(T − Tcb)/J0]1/2, we see that the curly bracket in
equation (50) is large and negative, while the termJ1 + 4J2 changes sign at the Lifshitz point
of the bulk. So forκ < κL whereJ1 + 4J2 > 0, we can have a surface Lifshitz point only if
|j1 + 4j2| � J1 + 4J2 andj1 + 4j2 is negative. As a result, the ratioκs = j2/j1 must be more
negative than the bulk valueκL = −1/4, in order to allow a modulated phase on the surface of
a ferromagnet. The actual transition temperature to the phase withqs > 0 is found by inserting
equation (49) into equation (48). The resulting expression is rather clumsy and hence is not
reproduced here.

We now consider the inverse limit whereTcs → Tcb, being interested in the behaviour
where a surface transition to a modulated phase merges with the bulk (ferromagnetic) transition.
Then forJ1 + 4J2 > 0 we can approximate0(q) as

0(q) ≈ aq
√
(J1 + 4J2)/J0 (51)
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and instead of equation (48) we find

τ(q) ≈ 2(j1 + j2) + J0 − a2q2(j1 + 4j2) +
a4q4

12
(j1 + 16j2)

− aq
√
J0(J1 + 4J2) +

1

2
a2q2(J1 + 4J2). (52)

Due to the termaq
√
J0(J1 + 4J2) we recognize thatτ(q) always decreases with increasingq

nearq = 0, irrespective of the values of the parameters, so there is always a local maximum
at q = 0. (Note that we have definedq non-negative; therefore this maximum really appears
in this treatment as a boundary effect, and cannot be identified from dτ(q)/dq = 0.) On the
other hand, the solution of dτ(q)/dq = 0 may lead to a maximum ofτ(q) at some nonzero
qs , and if τ(qs) > τ(0) the solutionqs yields the physically relevant case. If we change the
parametersj1, j2, J1, J2 such that we reach the situation where

τ(qs) = τ(0) (53)

then the solution withqs > 0 disappears discontinuously and the solution withqs = 0 takes
over. Sinceqs cannot vanish smoothly whenTcs = Tcb, a surface bulk multicritical point
which simultaneously is a surface Lifshitz point (but not a bulk Lifshitz point) cannot occur.

The valueqcrits for which equation (53) is fulfilled and the surface transition lineTcs
hits the bulk transition temperatureTcb (remember, we discuss only the caseκ < κL here,
i.e. J1 + 4J2 > 0) is easily obtained as follows. First we note that a necessary condition for
the expansion equation (52) to make sense is

j1 + 4j2 − 1

2
(J1 + 4J2) < 0 j1 + 16j2 < 0. (54)

Only then can we expect a maximum ofτ(q) for small but positiveq, while if j1 + 16j2 >

0, τ (q) would increase for largeq, i.e. the expansion then does not make any sense. If
j1 + 4j2− 1

2(J1 + 4J2) > 0, allq-dependent terms in equation (52) would have the same sign,
i.e. τ(q) would uniformly decrease asq increases. Using equations (52), (53) together with
dτ(q)/dq = 0 yields

(aqcrits )2 =
[

1

2
(J1 + 4J2)− (j1 + 4j2)

]/
[4|j1 + 16j2|] . (55)

Note that at the same timej1, j2 must satisfy equation (21), and thus the three parametersqs ,
jSB1 , jSB2 are uniquely determined from the three equations dτ(q)/dq = 0, equation (21), and
equation (53), respectively. However, in the limit where equations (48), (49) are valid, one has
d2τ(q)/dq2 > 0 for q = 0, i.e.q = 0 is a minimum, and the conditionτ(0) = τ(q) would
simply yieldq = √2qs . This cannot be solved together with dτ(q)/dq = 0: τ(qs) > τ(0) as
long asqs > 0. However, when atT = Tcs one has

(j1 + 4j2) +
1

2
(J1 + 4J2)

{[
J0

kB(Tcs − Tcb)
]1/2

− 1

}
> 0

soqs = 0 is a maximum ofτ(q) and the solution found in equation (49) would be a minimum.
Another maximum at a value ofq that tends toqcrits as given by equation (55) forTcs → Tcb
occurs if equation (54) is fulfilled. For a discussion of this situation a more accurate analysis
of τ(q) in equation (13) would be required. Figure 4 shows the possible behaviour ofτ(q)

schematically.
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Figure 4. A schematic sketch of the behaviour ofτ(q)− τ(0) as a function ofq for three different
cases leading to modulated order at the surface of a ferromagnet. Cases (a), (b) correspond to
the caseTcs > Tcb and(j1 + 4j2) + 1

2(J1 + 4J2){[J0/kB(Tcs − Tcb)]1/2 − 1} < 0 (a) or>0 (b),
respectively, while case (c) corresponds toT = Tcb and(j1 + 4j2)− 1

2(J1 + 4J2) < 0, indicating
howqcrits (equation (55)) can be found by suitable variation ofj2/j1 at fixedj1 + j2.

5. The continuum model

As is well known [3–13], molecular-field theory is a modest first step in the description of
critical phenomena, and for a treatment of fluctuations one either has to resort to Monte
Carlo simulations (which are somewhat cumbersome for the ANNNI model even in the bulk
[4, 5]) or to renormalization group expansions [6–9, 13]. The latter need a continuum version
of molecular-field theory as their starting point. For completeness, we formulate here the
continuum version of our model, although a renormalization group treatment is beyond the
scope of our work.

As in [18], we transform the difference equations into a differential equation with the help
of the expansion (µn ≡ µ(z))

µ(z± a) = µ(z)± a dµ/dz +
1

2
a2 d2µ

dz2
+ · · · (56)

so equation (5) becomes

{2[J0 + J1 cos(aq) + J2 cos(2aq)] − kBT }µ(z) +
1

2
a2J0

d2µ

dz2
= 0 (57)

where we have used equation (7) to eliminate the bulk magnetizationm. A decaying exp-
onential solution away from the boundary which we now shift toz = 0 is

µ(z) = µ(0) exp[−0(q)z/a] (58)
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and substituting equation (58) into (57) yields

J00
2(q) = 2{2[J0 + J1 cos(qa) + J2 cos(2qa)] − kBT }. (59)

NearTcb where in equation (11) one may write cosh[0(q)] ≈ 1 + 1
20

2(q) one sees that equ-
ations (11) and (59) are equivalent, while further away fromTcb these equations differ [18].

The constantµ(0) = µ0 can be determined from the boundary condition atz = 0.
Expandingµ2 in equation (6) asµ(a) = µ(0) + a(dµ/dz)|z=0 yields

kBT µ0 = 2[j1 cos(qa) + j2 cos(2qa)]µ0 + J0µ0 + J0a(dµ/dz)z=0 +K (60)

where we have used the abbreviation

K = b + [J0 + 2j1 cos(qa) + 2j2 cos(2qa)− kBT ]m. (61)

Equation (60) is a boundary condition linkingµ0 = µ(z = 0) and (dµ/dz)z=0 [10–13],
which is different from the case where thez-axis is oriented perpendicular to the surface. The
differential equation analogous to equation (57) then contains a term proportional to d4µ/dz4

as well, and two boundary conditions including both terms in(dµ/dz)z=0 and(d2µ/dz2)z=0

required [18].
Since equation (58) implies(dµ/dz)z=0 = −µ(0)0(q)/a, one readily finds from equ-

ation (60) that

µ0 = K/(kBT − τcont (q)) (62)

which is the continuum analogue of equations (12), (13) but with

τcont (q) = 2[j1 cos(qa) + j2 cos(2qa)] − J0[1− 0(q)]. (63)

Again we find agreement with the result of the difference equation, equation (12), if we expand
exp[−0(q)] ≈ 1− 0(q), which is appropriate forT close toTcb. As usual, the condition
for the applicability of the continuum approximation is that the correlation lengthξb is much
larger than the lattice spacing.

Of course, in the basic molecular-field equationHi
eff /kBT = arctanh(〈Si〉) one must

also include the leading nonlinear term resulting from arctanh(x) ≈ x + x3/3 which yields a
termµ3(z) to be added in equation (57), in order that the standard Ginzburg–Landau equation
[10–13] for surface critical phenomena is obtained.

6. Conclusions

In this study we have extended previous work on surface effects on the critical behaviour of the
ANNNI model, where thez-axis along which nearest- and next-nearest-neighbour exchange
(J1, J2) compete was oriented perpendicular to the surface, by considering the alternative case
where thez-axis is contained in the surface plane. We have allowed for different interactions
(j1, j2) along thez-axis in the surface plane, and we have shown that—within the mean-
field theory—surface transitions may occur at temperatures exceeding the bulk transition
temperature. We have also shown that modulated surface structures occur on the surface
of a ferromagnet, and paid attention to the occurrence of surface Lifshitz points as well as to
the possibility that the wavenumberqs of the surface modulation jumps to zero discontinuously
when a critical valueqcrits is reached.

Pronounced deviations from mean-field behaviour due to statistical fluctuations are
expected: two-dimensional modulated phases belong to the universality class of the two-
dimensionalXY -model and hence lack true long-range order. The surface transition to
modulated structures hence should be of the Kosterlitz–Thouless type, and no Lifshitz point
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occurs ind = 2 dimensions [4, 5] at nonzero temperature. As a result, no surface Lifshitz
points are expected to exist either.

Thus we feel that our most physically relevant results concern the surface effects on the
bulk Lifshitz point. We have obtained the exponentsγ1, γ11, η⊥, η‖ and we have shown that
they satisfy the expected scaling relations. We expect that these scaling relations hold beyond
mean-field theory, although the actual values of the exponent are unknown when one goes
beyond mean-field theory. (Note that the upper critical dimension for uniaxial Lifshitz points
is du = 4.5 and thus somewhat larger differences from mean-field values are expected for
d = 3 than for ordinary critical phenomena for whichdu = 4 [4–9].) An important qualitative
consequence of the anisotropy of the model, which is expected to apply also beyond mean-field
theory, is the fact that the surface critical exponents depend on the orientation of the surface
relative to the distinct axis.
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