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Abstract. The semi-infinite axial next-nearest-neighbour Ising (ANNNI) model in the disordered
phase is treated within a molecular-field approximation, and the singularities of various response
functions characterizing the critical behaviour at the surface are obtained. In previous work
(Binder K and Frish H L 1999 Eur. Phys. J.B 10 71) the axis where a nearest-neighbour
ferromagnetic(J1) and next-nearest-neighbour antiferromagnétig) exchange compete was
chosen perpendicular to the surface plane. In the present work we consider an orientation of this
axis parallel to the surface, allowing also for different values of these exchange interagtions

in the surface plane. We derive the conditions for the occurrence of a surface transition, where the
surface plane (at a temperature where the bulk is still disordered) orders either ferromagnetically
or into a modulated structure. At the ordinary transition of the surface we obtain the mean-field
values of the surface critical exponents, including the Lifshitz point of the bulk, V\;q’elee 1/2,
vh=-1/2,nt =0, 'YHL = 3. These exponents differ from their counterparts for the case where
the axis of competing interactions is oriented perpendicular to the surface, and thus it is shown that
for a uniaxial Lifshitz point the surface critical behaviour depends on the surface orientation.

1. Introduction

The axial next-nearest-neighbour Ising (ANNNI) model [1-5] is an archetypical model
describing how competing interactions in a solid can give rise to incommensurately modul-
ated order and uniaxial Lifshitz points [4—7]. In this model, site¥ a (hyper-) cubici-
dimensional lattice carry Ising spin$ = =+1, which interact ind — 1 directions with a
nearest-neighbour ferromagnetic exchange interacfonwhile in the remaining direction

(2) there is a competition between a nearest-neighbour ferromagnetic exchandeand a
next-nearest-neighbour antiferromagnetic exchahge 0. If the ratiox = —J,/J; exceeds a
particularvalue, (x, = 1/4in molecular-field theory [4, 5]), the system undergoes a (second-
order) phase transition at a temperatilizg(x) from the disordered phase to a phase whose
order is modulated in the-direction with a wavelength = 27 /g («) with g (k) o (k — k)P

[6, 7], the exponeng, in mean-field theory being, = 1/2. At the Lifshitz point ¢ = «,,

T =T, =Ty = k1) = Tup(k = x1); see figure 1 for a partial phase diagram of the
ANNNI model in the molecular-field approximation) there is no longer any modulation, but
the critical behaviour is anisotropic since the wavevector-dependent suscepjilodjty;.)

0953-8984/00/010029+14$30.00 © 2000 IOP Publishing Ltd 29
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Figure 1. The phase diagram of the ANNNI model for the bulk in the molecular-field approx-
imation, in the plane of variables{T — z;Jo)/J1 and« = —J>/J1, z; being the coordination
number in the (hyper-) plane normal to thelirection. The phase transition occurs from a
paramagnetic phase (P), characterized by a monotonically decaying correlation function, to a
ferromagnetic phase (F) @t= T, («) for k < «z, With kg T, (k) = zJo + 2J1(1 — k). The end

point of this line,T;, = T.,(x = k1), is the Lifshitz point. Fok > «; one has a transition from

a disordered phase (D), where the correlation function exhibits an oscillatory decay, to a phase
with modulated periodic order &t = T, (k) = Tep (k) + J1(kcp /i) (6 /KL, — 1)2/kp. Note that in
molecular-field theory,, (x) andT,,, («) meet tangentially at the Lifshitz point. The disorder line
Ti(k) = Top(ic) + Ji(kr /i) (i /kr, — D2/ kg, k < xr, does not indicate a thermodynamic phase
transition but a change in the asymptotic decay of the correlation function (from exponentially
damped oscillatory fof" > T, (x) to simple exponential fof;(«) > T > T.»(x). The disorder

line also merges tangentially &t with 7., («). Only the phase transition atthe highest temperature,
where the disordered (or paramagnetic) phase becomes unstable, is shown here. Commensurate—
incommensurate transitions occurring at lower temperatures [4, 5] are not shown here. From Binder
and Frisch [18].

behaves as
x (@), 0) = x»/ (L +&FqD) x0.q;) = xo/ (L +EFq)) 1)

with & o« (T — Tp)™, &, o (T — Tp)~"+, with critical exponents, = 1/2, v, = 1/4

in mean-field theory [4, 5]. Of course, for an accurate description of this anisotropic critical
behaviour one has to go beyond mean-field theory taking fluctuations into account, e.g. by a
renormalization group treatment [6—9], but this is beyond the scope of the present paper.

Here we are concerned with the effect of a free surface on the critical behaviour of this
model, and in particular, at the Lifshitz point. While surface critical behaviour of ferromagnets
has been considered extensively [10-13], and also surface effects on modulated phases in
isotropic systems such as block copolymer mesophases have been occasionally considered
[14-17], the surface critical behaviour at uniaxial Lifshitz points has attracted attention only
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Figure 2. The cross section perpendicular to
a the surface plane of a semi-infinite simple cubic
1 2 3 eesee n Layer number ANNNI model, the surface plane being oriented
perpendicular to the direction where the modulation
appears. Nearest-neighbour exchange constantsinthe
- surface plane are denoted s while the exchange
P constants in all interior planes parallel to the surface
are Jo. The nearest-neighbour exchange in the
direction perpendicular to the surface/ig the next-
nearest-neighbour exchange in thdirection isJ; (it
distance is shown explicitly in the top row only). The lattice
from the spacing isz. In the corresponding continuum model,
surface the lateral coordinates are denotegsasrom Binder
and Frisch [18].

recently [18, 19]. Two of the present authors (HLF and KB) have analysed the situation where
the surface is oriented perpendicular to the modulation direction [18] (figure 2).

Here, we orient the free-surface plane so thatit contains the modulation direction (figure 3).
The anisotropy of the model renders the two surface orientations of figure 2 and figure 3
inequivalent. In particular, if a ‘surface transition’ [10—13] occurs in the case of figure 2
at T.;(x), a ferromagnetic long-range order in the surface plane sets in, even forc,
where the bulk has a transition to the modulated structufe at7,,,(«). In the temperature
rangeT,,(k) < T < T.(x) this ferromagnetic surface layer then induces a modulation
perpendicular to the surface with an amplitude that decays exponentiakp(—z /&, ) where
&, isthe bulk correlation length in thedirection) as one moves towards the bulk. In contrast,

a surface transition in the case of figure 3 can mean the onset of githefl)-dimensional
ferromagnetic or uniaxially modulated order, depending on the values of various exchange
interactionsjs, j2, Jo, J1, andJ, that come into play. If a modulated order in thelirection

sets in atT,(x), for T < T.(x) (but temperatures where the bulk is still disordered), a
corresponding modulation will be induced in the interior layers- 2, 3, ..., but with an
exponentially decaying amplitudecexp(—x /&) where is the bulk correlation length in the
x-direction). Particularly interesting is the behaviour of the ‘ordinary transition’ [12, 13] (no
surface transition af, («) occurs; rather the surface order is induced by the ordering of the
bulk) at the Lifshitz point of the bulk: we shall see that the surface critical exponents depend
on the orientation of the surface in this case.

2. Linearized molecular-field theory for the semi-infinite ANNNI model on a lattice

In molecular-field theory, every spin is aligned by the local field acting on it, so we have

(S;) = tan}"(Hiff/kB T), and the local effective fieldi;ff is written as a sum of the external

e
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! Z 3 et n loyer number Figure 3. The cross section perpendicular to the

surface plane of a semi-infinite simple cubic ANNNI
model, the surface plane containing thelirection
surface in which the modulation appears. Nearest and next-
nearest exchange constants in thdirection arejs,
J2 in the surface plane, andi, J; in all other planes.
z The (nearest-neighbour) exchange constant in all other
lattice directions igp (ford > 3this exchange constant
also occurs in the surface plane). Layers oriented

distance .
> from the parallel to the surface are labelled by an index = 1
0 X surface for the surface plane); planes oriented perpendicular to

the modulation directios are labelled by an indek

field H! , (it may be convenient to assume that this field is inhomogeneous, so one can consider
e.g. the response to a suitably periodically modulated field) and the contributions due to the
coupling to the neighbouring spins. These contributions are taken proportiai$a} tan the

region above any transition temperature and for small endfjgh one may linearize these
molecular-field equations, which means one considers the effect of the external field

linear response. This is the only case that will be considered here.

For simplicity, we work out only the special case alla= 2)-dimensional square lattice.
(This is not a serious restriction on the mean-field level, however, since molecular-field theory
yields only rather trivial dependencies on dimensionality.) So the latticeisées labelled
by two indices, for rows: and columng, and we introduce the notatiqs;) = M, ;. Then
the linearized mean-field equation in the bulk (ize 2) becomes, considering a modulated
field in the bulk(H! , = B exp(igka))

Xt
kyT M, = Bexpligka) + Ji(M,, js1+ My —1) + J2(My, js2 + My, j—2)

+ Jo(Mpur1x + My_11) nz2 2
HereB is the amplitude of the bulk periodic field, and the special case of a bulk uniform field
is recovered foy = 0.

In the surface layer (correspondingio= 1) the couplings parallel to the surface are
different. They are denoted gg and j, (see figure 3). It is also convenient to allow for a
different amplitudé of the magnetic field applied in the surface layer [10-12]. For the surface
layer, the linearized molecular-field equation then becomes
kT My = bexpligka) + ji(Myg+1+ Myg—1) + jo(Myge2 + Myg—2) + JoMoy n=1

3)
Let

M, = (m+ w,) expigka) 4)
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wherem is the ‘bulk’ periodic magnetization. Requiring + w, to satisfy the linearized
mean-field equations means

kgT (m + pu,) = B + 2[J1 c0daq) + J> C0L2aq)](m + ju,) + Jo(2m + fLy_1 + fn+1) )
and
kpT (m + w,) = b+ 2[j1coaq) + j.coS2aq)](m + ju1) + Jo(m + [12). (6)

We can assume that, becomes small for large and this allows one to extract the bulk
magnetizationn from equation (5):

B B _ B/kg -
M keT — 2[Jo + Jrcodqa) + Joc082qa)] T —T(q)"

Here
kT (q) = 2[Jo + J1COYga) + J> CO2qa)] (8)

is the bulk instability temperature for wavenumlger The expression fom (equation (7))
makes sense only for temperatures which keep the denominator positive fpr dlhe
instability of the disordered phase in the bulk occurs wiieis equal to the largest (¢),

for ag which we denote ag,. MaximizingT (¢) with respect t@ gives eitheg, = 0 (namely
for x < k) or[18]

cosgpa) = (4)~". 9)
A more detailed discussion of the bulk behaviour of the ANNNI model within mean-field
theory has been given by Binder and Frisch [18].

We now make theansatzthat the correction to the uniform magnetization decays
exponentially with the distance from the surface, as is standard [10-12, 18].

pn = n1eXpl=T(g)(n — 1)] (10)

solves equation (5) if the decay rdt¢g) is such that
kg[T — T(q)]

2Jo '
The amplitude of this decaying magnetization is determined by the linearized molecular-field
equation at the surface layer, which serves as a boundary condition:
b —{kpT —2[j1c0g9qa) + j2(COS Za)] — Jo}m
 ksT —2[j1codqa) + j2co82qa)] — Joexp[-T'(g)]’
This expression can also have singularities which correspond to the surface transition if they
occur at a temperature where the disordered phase is still stable in the bulk. Writing the

denominator of equation (12) in analogy with equation (RA3" — 7 (¢)) gives the instability
temperature for the surface as a functiony @fs

T(q) = 2[j1codqa) + j2c042qa)] + Joexp[-T'(g)]. (13)
Which type of ordering takes place depends on the functit@ge andz(g). Letg, be the
value ofg which maximizesrT'(¢q) and letg, be the value ofy which maximizes(¢). Then
the following cases describe the orderings that can occur. Some special cases which one can
encounter by suitable variation of the exchange constant, in the bulk andj;, j, in the
surface are emphasized.

coshll(¢)] = {kpT — 2[J1codqa) + J2c092qa)]}/2Jo = 1 + (11)

M1 (12)

(1) g» = 0 andT (0) > 1(g,). Ferromagnetic bulk ordering and ‘ordinary’ surface critical
behaviour. Fork < k; this is similar to the standard case considered in the literature
[10-13], while fork = «; we encounter ‘ordinary’ surface critical behaviour at the bulk
Lifshitz point.
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(2) g» # 0 andT(gy,) > t(g95). Modulated bulk ordering and ‘ordinary’ surface critical
behaviour.

(3) ¢ = 0 andz (0) > T(gp). A surface transition to ferromagnetic surface ordering occurs.
Fork* = —j»/j1 less tham; this is similar to the standard case considered in the literature
[10-13], while forx* = k] we encounter a surface version (i.e/,— 1)-dimensional
ordering) of the Lifshitz point.

(4) g # 0 andt(gs) > T(gp), for «* > k7. A surface transition to modulated surface
ordering occurs. The behaviour is similar to that for the bulk if> 0 as«® tends tac;
from above. However, for some parameters it seems possible that a discontinuous jump
of ¢, from a nonzero value to zero &} occurs. This eliminates th@ — 1)-dimensional
Lifshitz-point behaviour at; .

(5) When the surface transitionafy,) and the bulk transition &t (¢,) merge, we obtain the
‘special transition’ (also called the ‘surface—bulk’ multicritical point [12, 13]). This point
occurs forT (g,) = (g,) in molecular-field theory. 1§, = 0,¢;, = 0, andx < «, we
have a situation similar to the standard case considered in the literature [10-13]. If both
q» andg, are nonzero buf,/J1 # j2/j1, the physics is rather different, because different
types of ordering become critical at the surface and in the bulk.

Obviously, the model considered here has a very rich phase behaviour. In the following,
we shall not attempt to give an exhaustive analysis of all possible cases (note that one may also
have the special case that a surface—bulk multicritical point might coincide with the Lifshitz
point in the bulk, etc), but discuss only a few particularly relevant cases.

3. Surface critical behaviour near the bulk Lifshitz point

We first consider the case where< «; (whereg, = 0) and assume surface interactigns
Jj2 such that no surface transition occurs (as will be specified below). We then consider the
response of the magnetization in the surface layer

My =My =m+u independent ok (14)
to homogeneous buli) or surface) fields, noting from equations (7) and (12) that
m = B/[kgT —2(Jo+ J1+ J2)] = B/[kp(T — Top(x))] (15)
_ b= TkgT = 2(j1+ j2) = Jolm
kpT — 2(j1+ j2) — Joexp(—T)

NearT = T., we may expand: exp-I") ~ 1—T" and use [11] (see also reference [18]) to find
I' ~ [kg(T — T.;)/Jo]*¥2. This yields for the surface layer susceptibiljty (for definitions
cf. [12])

M1 (16)

1/2
~ (IM1/3B)r = [ Jo ] ! 7
X1 1 r= kB(T_ch) kBT_JO_z(jl+j2)

in agreement with the expected critical behavigurex (T — T,,) "t with y;, = 1/2 [10-13].
Similarly, the susceptibilityy;; becomes

x11 = (0M1/db) = [kpT — 2(j1 + j2) — Joexp(—T)] ™ (18)
which can be expanded neBr= T,,:

x11 ~ [k Tep — 2(j1+ jo) — Jol ™t = [Jo(T — Tup)/ k)Y 2lkp T — 2(j1 + jo — Jo)] 2.
(19)
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Thus one finds a cusp-like singularity:
X1~ X1t — (T — Top) 7™ with y1; = —1/2. (20)

All these results, equations (17)—(20), hold only f@1T,, — Jo > 2(j1 + j2). When this
inequality turns into an equality, we get the (ferromagnetic) surface—bulk multicritical point:

JPB+ 3B = Ji+ Do+ Jo/2. (21)

Here the well-known result fof,, was used [18]kgzT., = 2(J1 + J2 + Jo).
It is also interesting to work out the wavevector-dependent susceptipility) along the
ferromagnetic line for smal}. Equations (7), (12) imply fof’ nearT,

B oM,
xa(q) = <BB exp(iqka))T

7 12
~ [—0] / (kT — Jo — 2[j1cOSga) + joCcOS2qa)]}. (22)

k(T —T(q))
Since for smally we can expand'(¢) as
ksT (q) ~ kgTe, — a’q?(J1+4J2) +0(g") (23)
we obtain
x1(q) = [Jo/ kp(T = T2 +4°E5) 2/ {kp Top — Jo — 2[ j1 €O qa) + j2 cOS2qa)])

(24)

where&2 = (Jy+4J2)a?/[kp(T — Tep)] o (T — Top) 2 for k& < k. Equation (24) shows that
atT = T,, we obtain a power-law decay

~ Jo -1 -2
Xl(q)|T=n,, ~4/ mq oc g e n. =1 (25)

As it should be, the scaling relation [10, 12]

M1 = vp[2 — 1] (26)

is satisfied for the mean-field exponents along the ferromagnetic line (remevmber%).
Similarly,

x11(@) = (%)T ~ (ks T — 2[j1cosga) + j»c082a)] — Jo eXPE-T (@]}
(27)
which nearT,, can be expanded as
x11(q) =~ {kpT.p — 2[j1COSqa) + jocO42qa)] — Jo} ™+
— JoT'(q){kp T — 2[j1cOqa) + j2CON2qa)] — Jo} 2. (28)

From equation (11),
1
JoT*(@) ~ k(T = Top) + Sq*a®(J1 + 4J2) + 0(g"). (29)
Thus atT,, the singular part of11(¢) scales as<ﬂ”g|T:T(b & g = ¢~ which yields the
well-known resulty; = 2 [10-12]. Thus the scaling relation [10-12]

yin=v(1— 1)) (30)

is also fulfilled along the whole ferromagnetic line0« < ., and the exponents all have
their standard values. Only amplitude prefactors depend as expected.
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We next consider the modulated phase;> «;, and obtain the wavevector-dependent
response functions far = ¢;, assuming thag, is small enough that we may approximate
cosq, ~ 1—q?2/2,ie.q, = V2T —«./x [18]. NearT = T,,, = T(gq,) we again have
['(gp) ~ [kg(T — T,p)/Jo]*? and hence the response functions for modulated order become

X1 = (0M1/3[ B expligyka)])r = d(m + pn1)/0B

N ( JO >1/2
kB(T - T;nb)

x {kgTup — Jo — 2[j1COgpa) + jo COX2qpa)] + JOF(Qb)}_l (31)
and
x11 = (AM1/9[b expligyrka)])
= {kpT — 2[j1c08qpa) + j2CON2qpa)] — Jo + JoT (gs)} L. (32)

These results yield the same type of singularity for the surface critical behaviour along the
transition line to the modulated phase as for the ferromagnetic transition:

n" =12  pP=-12 (33)
Considering the wavevector-dependent responseg 1y, and expanding ig — g5, one can
also show thay™ = 1, 5"’ = 2 and the scaling relations equations (26), (30) continue to

hold.
Fromthe phase diagram (figure 1) it follows that we can readily obtain the critical behaviour
at the Lifshitz point lettingc = x;, = 1/4 andg,, = 0. Thus we see that

T 12 |

N\ a -1 kpTi = Jo—2(ja+ ] eyl =1/2 34
X1 <kB(T—TL)> /{ BT — Jo—2(j1+ j2)} i.e yi / (34)
aay = (ks T = 202+ J2) = Jo+ Jol'} e yh=-1/2 (35)

While these exponents are the same as along the ferromagnetic line, the expﬁnejﬁ{s
differ. This is obtained from an expansion analogous to equation (29). The term proportional
to ¢2 vanishes and one must include a term proportionaftdForx = «,

1
kpT(q) = kpTy + 1—2(aq)4u1 +16J,) + 0(¢%). (36)

Hence the wavevector-dependent surface layer susceptibilities at the Lifshitz point become

Ligy— | Jo/ks ! /kT—J—Z'- + 2 37
x1(q) ‘/T—TLM {ks Ty — Jo — 2[j; cosaq) + jocoS2aq)]} (37)

where
Ji\ Y4 L
£ = a(m> (T —T,) Y4 £ o (T —Tp)™"s vk =1/4 (38)
B
and

x11(q) ~ {kg Ty — 2[j1cosga) + j»cos2qa)] — Jo}*
— JPkp(T = Ty) — ga* (1 + 167,) /12]2

x (kpTy, — 2[j1cosga) + j2c082qa)] — Jo} 2 +---. (39)
These results show that f@ér = T; theg-dependence is
L,sin

xt(q) < q? X1 (q) o g*? (40)
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i.e., the exponents], n are(x{ (¢) g2t yLsing(g) oc g1
nf=0 =3 (41)

These are exactly the values required to satisfy the scaling relations

1 1 1 1
n=viR-np=7x2=3 ri=vi—np)=7x(=2)=-3 (42)

We emphasize at this point that for the orientation of the surface perpendicularzaitie
(where the competing interactions occur) a completely different set of exponents has been
found, namely [18]

=12 yh=-14 =32 pi=1 (43)

Considering here alsogvector oriented parallel to the surface, it is clear that the correlation
IengtthL = 1/2 rather than'’ = 1/4 has to be used in the scaling relations, equations (26),
(30), which are then also fulfilled. Comparing equations (34), (35), (41) with equation (43)
shows the most important result of the present work, namely that the surface critical exponents
at a uniaxial Lifshitz point depend on the orientation of this axis relative to the surface.

4. Surface transitions

We return to the case < «; whereg, = 0 and also assumg = 0, but now we allow for

the case that has been excluded in the previous section, nag®ly— Jo < 2(j1 + j2): the
negative sign of the denominator in equation (17) then signals that this equation is no longer
valid. Instead a surface transition has occurred, at a critical tempefatusbich is given by

the implicit equation

kpTes = 2(j1+ j2) + Joexp{—T'(T¢,)}. (44)

All susceptibilitiesx;(T) and x11(T) have simple Curie—Weiss singularities there, familiar
from bulk critical points in the mean-field approximation. This is seen via the expansion

dr

exp{—I'(T)} = exp{—T'(T;,)} {1 —(T - TM(@) } (45)
T=T,,

which yields, together with equation (18)
x11 = [kp(T — T.)]"

—1

dr L Jo

x 11+ Joexp[-T'(T,)] a7 for ji+ jo> Ji+ o+ >
T=T,

(46)

and a similar result applies for;. These results do not differ in any significant way from the
surface critical behaviour of the nearest-neighbour Ising ferromagnet; they hold#fozadl,

but not including the Lifshitz point. However, since the above assumptiongthat 0 for

T > T, holds only underneath the disorder lirfe,< T,(x) [20], andT,;(x) merges with
T.»(x) at the Lifshitz point [18]; cf. figure 1.

More interesting is the case where a modulated phase appears at the surface before any
order appears at the bulk. We are not treating this problem in full generality, but focus only on
the situation wherg,a « 1, so co$g,a) can be expanded:

4 _4

. . . . a . . 1
T(gs) & 20j1 + jo) + Jo — a’q2(js + 4jo) + 1—‘5(11 +16j2) — Jol'(q) + S Jol*(q,)  (47)
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where
_ 1

[(g0) = Jo *lks(T = Tup) + aPq7(J1+ A1) — T5aq} (Jy + 167)] 72,
However, care is necessary in the proper treatmert (g@f): whenT — T, the term
kz(T — T.,) will always get smaller than the subsequent terms even for very gmaihd
therefore in this limit the square root cannot be expanded in a power seges Buch an
expansion is possible only whéfy is sufficiently larger thaff,, thatkz (7., — T,;,) for all ¢
of interest is the dominating term under the square root. In this limit one gets

. . . . a4 4 . . k (Tcs - Tc) 2
T(q) ~ 2(j1+ jo) + Jo — a’q®(j1 + 4j2) + 1—2(11 +16j2) — Jo [Bj—ob]

1 J 1/2
[—Om} (J1 +415) (a%q?)

2 [ kp(Tys —
1 Jo 12
+{ -] —F Jy + 16J;
{24|:kB(ch - cb)] ( ! 2)
1 Jo 32 2| 4 4
| (J1+4J
SJo[kBam—ch)} (f1+4%) }“ 1
1 1 1
+ Skp(Ty = Tp) + 5 (1 + 4J5)(a’q?) — 41+ 16%2) (a*q™). (48)

Theng; is found from the conditiontig)/dg = 0 (and &< (¢)/dg?|,, < 0). Thisyields (note
that both the numerator and the denominator of the following expression must be negative)

J 1/2 1
a’q? = {2(j1 +4jp) + [WO—YL;,)} (Ji+4J) — (J1t 4J2)}/{ é(jl +16j2)

1 J 12 1 J 3/2
+ [—O } (J1 +16J5) + — [—O }
TL‘[J)

6 [ kp(Tes — 2Jo Lks(Tey — Top)
x (J1+4J2)% — é (J1+ 1612)}. (49)
Thus we conclude that the surface Lifshitz point, whgre> 0, is given by the condition
. : Jo vz
2(j1+4j2) = (J1t+4J2) {1 - [m} } (50)

whereT, is given by the solution of equation (44). Since the expansion that we have used
requiresI'(g;) < 1,T(g; = 0) ~ [kz(T — T.,)/Jo]*/?, we see that the curly bracket in
equation (50) is large and negative, while the teim 4J, changes sign at the Lifshitz point
of the bulk. So fo < «; whereJ; +4J, > 0, we can have a surface Lifshitz point only if
lj1+4j2| > J1 +4J, andj; + 4, is negative. As a result, the ratig = j,/j; must be more
negative than the bulk valug = —1/4, in order to allow a modulated phase on the surface of
aferromagnet. The actual transition temperature to the phasewitt0 is found by inserting
equation (49) into equation (48). The resulting expression is rather clumsy and hence is not
reproduced here.

We now consider the inverse limit whefg, — T, being interested in the behaviour
where a surface transition to a modulated phase merges with the bulk (ferromagnetic) transition.
Then forJ; + 4J, > 0 we can approximatE(g) as

['(g) = aq+/ (J1+4J2)/Jo (51)
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and instead of equation (48) we find

ata?
1(q) ~ 2(j1 + jo) + Jo — a2q2(jr + Ajp) + 1—‘;01 +16j2)

1
—aqy/Jo(J1+4J2) + Eazqzul +4Jy). (52)

Due to the ternug+/Jo(J1 + 4J5) we recognize that(¢) always decreases with increasing
nearg = 0, irrespective of the values of the parameters, so there is always a local maximum
atg = 0. (Note that we have defingdnon-negative; therefore this maximum really appears

in this treatment as a boundary effect, and cannot be identified ftqeg) (g = 0.) On the

other hand, the solution oftdg)/dg = 0 may lead to a maximum af(¢) at some nonzero

gs, and ift(g;) > 1(0) the solutiong, yields the physically relevant case. If we change the
parameterss, j», J1, Jo> such that we reach the situation where

7(qs) = ©(0) (53)
then the solution witly, > 0 disappears discontinuously and the solution with= O takes
over. Sinceg, cannot vanish smoothly wheh, = T,,, a surface bulk multicritical point

which simultaneously is a surface Lifshitz point (but not a bulk Lifshitz point) cannot occur.
The valueg* for which equation (53) is fulfilled and the surface transition lihe

hits the bulk transition temperatuf®, (remember, we discuss only the case< «; here,

i.e.J; +4J, > 0) is easily obtained as follows. First we note that a necessary condition for

the expansion equation (52) to make sense is

1
Jit4j— §(J1 +4J) <0 Jj1+16j2 < 0. (54)

Only then can we expect a maximumofy) for small but positivey, while if j; + 16/, >

0, 7(g) would increase for large, i.e. the expansion then does not make any sense. If
Jit4j— %(Jl +4J,) > 0, allg-dependent terms in equation (52) would have the same sign,
i.e. t(g) would uniformly decrease agincreases. Using equations (52), (53) together with
dr(gq)/dgq = O yields

. 1
(agt"? = [E(Jl +4J5) — (i + 4j2)} /[4|j1 +16j2[] - (55)

Note that at the same tinyg, j, must satisfy equation (21), and thus the three parameters
j38, j5® are uniquely determined from the three equationggl/dg = 0, equation (21), and
equation (53), respectively. However, in the limit where equations (48), (49) are valid, one has
d’7(g)/dg? > 0 forg = 0, i.e.q = 0 is a minimum, and the condition(0) = 7(¢) would
simply yieldg = +/2¢,. This cannot be solved together with@)/dg = 0: z(g,) > 7(0) as

long asg, > 0. However, when af' = T,, one has

1 7o 1/2
j1+4jo) + = (Jy +4J. _ -1 0
(1 +4j2) 2( 1 2){|:kB(Tcs — ch):| } >

sog; = 0is a maximum ot (¢) and the solution found in equation (49) would be a minimum.
Another maximum at a value gfthat tends t@“"* as given by equation (55) fdk., — T,
occurs if equation (54) is fulfilled. For a discussion of this situation a more accurate analysis
of t(g) in equation (13) would be required. Figure 4 shows the possible behaviayy pf
schematically.
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Figure 4. A schematic sketch of the behaviourwmf;) — t(0) as a function of for three different

cases leading to modulated order at the surface of a ferromagnet. Cases (a), (b) correspond to
the casel., > T.p and(ji +4j2) + 3(J1 + 4J2){[Jo/ ks (Tes — Tep)]*? = 1} < 0 (a) or=>0 (b),
respectively, while case (c) corresponddte= 7., and(ji + 4j2) — %(Jl +4J) < 0, indicating

how ¢¢"i* (equation (55)) can be found by suitable variatiorygfj; at fixed j, + jo.

5. The continuum model

As is well known [3-13], molecular-field theory is a modest first step in the description of
critical phenomena, and for a treatment of fluctuations one either has to resort to Monte
Carlo simulations (which are somewhat cumbersome for the ANNNI model even in the bulk
[4, 5]) or to renormalization group expansions [6-9, 13]. The latter need a continuum version
of molecular-field theory as their starting point. For completeness, we formulate here the
continuum version of our model, although a renormalization group treatment is beyond the
scope of our work.

As in [18], we transform the difference equations into a differential equation with the help
of the expansiony,, = 1.(z))

1 ,d%u
u(iz+a) = u@ +adu/dz + —a*— +--- (56)
2" dz?
so equation (5) becomes
1, d’un
{2[Jo + Jicodagq) + J2c082aq)] — kpT}ju(z) + >4 Jod_z2 =0 (57)

where we have used equation (7) to eliminate the bulk magnetizatioA decaying exp-
onential solution away from the boundary which we now shit te O is

w(z) = u(0) exp[-TI'(¢g)z/a] (58)
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and substituting equation (58) into (57) yields
JoI'?(g) = 2{2[Jo + J1 coga) + Jocos2ga)] — ks T}. (59)

NearT,, where in equation (11) one may write coBli§)] ~ 1 + %F2(q) one sees that equ-
ations (11) and (59) are equivalent, while further away ffhpthese equations differ [18].

The constanit(0) = o can be determined from the boundary condition; at 0.
Expandingu, in equation (6) agi(a) = w(0) + a(du/dz)|,—o yields

kpT o = 2[j1codqa) + j2C02ga)] o + Jopo + Joa(du/dz).—o + K (60)
where we have used the abbreviation
K =b+[Jo+2j1c09qa) +2j,co92qa) — kgT]m. (61)

Equation (60) is a boundary condition linkingy = w(z = 0) and (du/dz),—o [10-13],
which is different from the case where thexis is oriented perpendicular to the surface. The
differential equation analogous to equation (57) then contains a term proportiofal tdzd
as well, and two boundary conditions including both termein/dz)._o and (d?/dz?).—o
required [18].

Since equation (58) implie®y/dz),—o = —u(0)I'(g)/a, one readily finds from equ-
ation (60) that

Mo = K/(kBT — Teont (CI)) (62)
which is the continuum analogue of equations (12), (13) but with
Teont (q) = 2[j1C0S(qa) + j2C092qa)] — Jo[1 — T'(g)]. (63)

Again we find agreement with the result of the difference equation, equation (12), if we expand
exp[-T'(g)] = 1 — I'(¢g), which is appropriate fof" close toT,,. As usual, the condition
for the applicability of the continuum approximation is that the correlation leggth much
larger than the lattice spacing.

Of course, in the basic molecular-field equatiH@f/kBT = arctanh(S;)) one must
also include the leading nonlinear term resulting from arctank: x + x3/3 which yields a
termu3(z) to be added in equation (57), in order that the standard Ginzburg—Landau equation
[10-13] for surface critical phenomena is obtained.

6. Conclusions

In this study we have extended previous work on surface effects on the critical behaviour of the
ANNNI model, where the-axis along which nearest- and next-nearest-neighbour exchange
(J1, J2) compete was oriented perpendicular to the surface, by considering the alternative case
where thez-axis is contained in the surface plane. We have allowed for different interactions
(j1, j2) along thez-axis in the surface plane, and we have shown that—within the mean-
field theory—surface transitions may occur at temperatures exceeding the bulk transition
temperature. We have also shown that modulated surface structures occur on the surface
of a ferromagnet, and paid attention to the occurrence of surface Lifshitz points as well as to
the possibility that the wavenumbgrof the surface modulation jumps to zero discontinuously
when a critical valug ' is reached.

Pronounced deviations from mean-field behaviour due to statistical fluctuations are
expected: two-dimensional modulated phases belong to the universality class of the two-
dimensionalXY-model and hence lack true long-range order. The surface transition to
modulated structures hence should be of the Kosterlitz—Thouless type, and no Lifshitz point
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occurs ind = 2 dimensions [4, 5] at nonzero temperature. As a result, no surface Lifshitz
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points are expected to exist either.

Thus we feel that our most physically relevant results concern the surface effects on the

bulk Lifshitz point. We have obtained the exponepisyi1, n., n; and we have shown that

they satisfy the expected scaling relations. We expect that these scaling relations hold beyond
mean-field theory, although the actual values of the exponent are unknown when one goes
beyond mean-field theory. (Note that the upper critical dimension for uniaxial Lifshitz points

is d, = 4.5 and thus somewhat larger differences from mean-field values are expected for

d = 3than for ordinary critical phenomena for whigh= 4 [4-9].) An important qualitative

consequence of the anisotropy of the model, which is expected to apply also beyond mean-field
theory, is the fact that the surface critical exponents depend on the orientation of the surface

relative to the distinct axis.
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